Dipl.-Ing. Kramert GmbH

Villigerstrasse 370 **CH-5236 Remigen**

Tel. 056 284 15 55 Fax 056 284 50 55 www.kramert.ch E-mail kramert@kramert.ch Ingenieurbüro für schnelle Elektronik Engineering office for fast electronics

Instruction Manual

Encoder Counter Module
ECM-504 A

All technical data subject to change without notice.

31. March 2006 © Dipl.-Ing. Kramert GmbH, CH-5236 Remigen

Description

The function of this module is to continuously read datas from 4 sensors. The sensor datas are stored in a dual ported memory. This memory is readable via VME-bus.

With each loop (read-out of all sensors) an 8 bit event counter is incremented. This event counter is placed on the MSByte of the 32 bit sensor data.

Memory 32 x 32 Bit.

For software compatibility of the ECM-504 VME module with the SSI-550 VME module, the memory space of both modules is exactly the same. The same EPICS software driver can be used to read both modules.

The VME-address range is selected by a 3x8 Bit-Dip switch (address selector, A31..A12). This address range is accessible via read and write commands (A32, D32; or A24, D32). The extended address range is selected via jumper switch. The occupied memory is always 128K.

An additional status register is implemented in the 504-A version. This register is used to

- 1. Enable the home-switch-counter-reset of each channel separately EN0..EN3.
- 2. Program the count direction of each counter separately VR0..VR3.
- 3. Shows the transition of each home switch by toggling the home flip-flops HFF0..HFF3, enabled by EN0..EN3.
- 4. Clear the encoder counter individually CLR0..CLR3

ENx is a signal which is a "wired or" connection to the S1 switches of the ECM-001 submodule dip-switches. VRx signal is "wired or" with S3. Either the dip-switch or the ENx -Bit can pull down the signal level. If you want to control the signals by the status-register bits, be sure that the dip switches S1x and S3x are open. There is read and write access to the status register.

Backward compatibility:

SW0

"ON"

There might be the case, that you want to switch the ECM 504-A module to a ECM 504 module. This can be done with one of the special function Dip-Switches.

Special Function Dip-Switches

"OFF"	ECM	504	ı
	A service	6.0	
	73	MO	
	ω 🖣	M1 ·	
	4 5	/POE SW0	
	0 - 2	SW1	
	7 8	NC NC	

Function

ECM 504-A

ECM-001 SUB-PRINT Dip Switch Settings

SMD-DIP-SWITCH:

Each Channel is controlled by a 4 bit dip-switch.

Function:

S1-ON Enable Z, Counter reset with Z reference mark; default: ON

S2-ON Invert Z polarity; default: OFF

S3-ON Changes counter direction (UP<->DOWN); default: ON

S4-XX Channel select; DON'T change this switch! This switch is locked. Hardware damage is possible.

VME Interface

Bit Assignment:

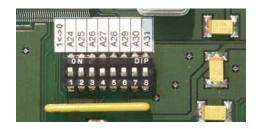
Sensor Register (0x00..0x7C)

Bit Function		
D23D0	Sensor Data (24 Bit)	
D31D24	Event Counter	

Status Register (0x80)

status register (onco)						
Bit	Function	Access				
D0D3	EN0EN3	R/W				
D4D7	VR0VR3	R/W				
D8D11	CLR0CLR3	R/W				
D12D15	HFF0HFF3	R				
D12D31	not used	R/W				

Base Address Settings


Base address + offset:				
0x00	Sensor 1			
0x04	Sensor 2			
80x0	Sensor 3			
0x0C	Sensor 4			
0x80	Status register			

The address range is selected by two 8 Bit-Dip switches (address selector, A31..A17). This address range is accessible via read commands (A32D32 or A24D32).

The RAM of the ECM-504 is located between baseaddress+0x00.. 0x0C, 0x80 (4Byte width). The base address can be mapped with the Dip Switches to 128K boarders within the VME address space.

Access via A24D32 Standard A32D32 Extended

This Standard/Extended address range switch is marked on the print with "S/E". Standard address range (A24) is selected with the switch in the Down-position. The extended address selector switch (A31..A24) is then disabled.

Base address	A31 A24	A23	A22	A21	A20	A19	A18	A17	A24/A32 Switch
with the STA/EXT-Switch = 1: STANDARD									
0x000000	Х	0	0	0	0	0	0	0	1
0x020000	Х	0	0	0	0	0	0	1	1
0x040000	Х	0	0	0	0	0	1	0	1
0x060000	Х	0	0	0	0	0	1	1	1
with the STA/EXT-Switch = 0: EXTENDED									
0x00000000	0	0	0	0	0	0	0	0	0
0x00020000	0	0	0	0	0	0	0	1	0
0x00040000	0	0	0	0	0	0	1	0	0

a.s.o.

Address Modifier:

	Addressing Space	AM-Codes
STA	STANDARD A2A23	3D, 39
EXT	EXTENDED A2A31	0D, 09

Ventilated VME-Crate is required. approx. 1 A at +5V Single width VME module.

Temperature Range: Power Requirements: Physical:

Front Panel Connectors

Encoder IN CH-0 9-pol. D-SUB female RS422 Encoder input, impedance

120 Ohm

RESET Push-Button, CH-0 Chip Reset

AUX-IN Clear CH0 Counter

TTL Schmitt Trigger LEMO Input, impedance 1kOhm

pullup, low active

CH 0,1 LED Shows LSB of the 24-bit encoder counters

Encoder IN CH-1

120 Ohm

9-pol. D-SUB female RS422 Encoder input, impedance

RESET Push-Button, CH-1 Chip Reset

AUX-IN Clear CH1 Counter

TTL Schmitt Trigger LEMO Input, impedance 1kOhm

pullup, low active

Encoder IN CH-2

120 Ohm

9-pol. D-SUB female RS422 Encoder input, impedance

RESET Push-Button, CH-2 Chip Reset

AUX-IN Clear CH2 Counter

TTL Schmitt Trigger LEMO Input, impedance 1kOhm

pullup, low active

CH 2,3 LED Shows LSB of the 24-bit encoder counters

Encoder IN CH-3 9-pol. D-SUB female RS422 Encoder input, impedance

120 Ohm

RESET Push-Button, CH-3 Chip Reset

AUX-IN Clear CH3 Counter

TTL Schmitt Trigger LEMO Input, impedance 1kOhm

pullup, low active

Pin Assignment 9-pol. D-SUB Connector					
Pin	Function	Pin	Function		
1	GND	6	A-		
2	A+	7	Z-		
3	Z+	8	B-		
4	B+	9	GND		
5	+5V DC				