Dipl.-Ing. Kramert GmbH

Holderweg 2 CH-5236 Remigen Tel. 056 284 15 55

www.kramert.ch E-mail kramert@kramert.ch Engineering office for electronic designs Instruments for Particle Physics and Space

User Manual

64 Channel Current-to-Digital-Converter CDC064 with Chassis CDC-B9

Image 1: CDC064 Module with 19" Chassis CDC-B9

Index

Features	2
Applications	2
Description	3
CDC064 Connectors and LED Functions	3
Frontpanel LED Function	3
64-Channel Current Input Signals Connector P1	3
Module Dimension	4
Low Voltage Power Input at Connector P2:	4
Mains AC Power Input CDC-B9 Chassis	4
Module-Setup	5
Communication	6
Commands	6
ADC-Data Transmission Modes	7
Initialization Command Sequence	7
Read ADC-Data	8
ADC-RAM-Buffer (ARB)	9
Module-Diagnostics-Registers	10
Revision History	12
Trouble Shooting:	13
Appendix	13

Features

- Adjustable Full-Scale Range
- Adjustable Speed
 - -Data Rate up to 6kSPS
 - -Integration Times as low as 166.5us
- USB interface with 1Mbps
- LAN interface 10-100 Mbps
- 2 x 32 galvanic isolated input channels split to X and Y
- Remote Module-Diagnostics : Temperature, Humidity, Supply-Voltage, Supply-Current, Power-ON/OFF, Reset
- Power-Consumption per module 3W
- ARM-Cortex M3 integrated Microprocessor System with active watch-dog reset of 30 sec

• Power-Supply Module MAX2512: 5V-9A, 12V-4A ; Schroff Part No : 13100112 @ RS-Online

Applications

- Photodiode Sensors
- X-Ray Detection Systems

Description

The CDC064 module uses two independent 32-channel current-input analog-to-digital (A/D)converters for X and Y readout.

It combines both current-to-voltage and A/D conversion so that 32 separate low-level current output devices, such as photodiodes, can be directly connected to its inputs and digitized.

For each of the 32 X and 32 Y inputs, an integrated circuit (DDC) provides a dual-switched integrator front-end. This configuration allows for continuous current integration: while one integrator is being digitized by the onboard A/D converter, the other is integrating the input current. Adjustable integration times range from 166 μ s to 1s, allowing currents from fAs to uAs to be continuously measured with high precision.

CDC064 Connectors and LED Functions

Sensor Input : 78-pol D-Sub HD, Male, Type <u>SPC15370</u>, Order-No 1564259 Distributor Farnell.com USB : 921600 baud, no parity, 8 data bits, 1 stop bit USB-B, 4-pol, Type <u>0670688110</u>, Order-No WM12786-ND Distributor Digikey.com

LAN: RJ-45, Ethernet (MDIX) 10 Half Duplex 10 Full Duplex 100 Half Duplex 100 Full Duplex AutoSensing

Backplane :

Eurocard DIN 41612, Type <u>09031647921</u>, Order-No 1096903 Distributor Farnell.com

Image 2

Frontpanel LED Function

LED	Control
Х	DDC-X RunEn-Register Bit[0]
Y	DDC-Y RunEn-Register Bit[0]
Sensor-PWR	Power_Reg (0x1C) Bit[0]
Module PWR	Front-panel handle Up/Down

Table 1

64-Channel Current Input Signals Connector P1

		P1 Connector								
Signal Pin Signal				Pin	Signal	Pin	Signal	Pin		
	ISO-GND	60	ISO-GND	21	ISO-GND	40	ISO-GND	1		
	X_DDC4	61	X_DDC3	22	X_DDC2	41	X_DDC1	2		
	X_DDC8	62	X_DDC7	23	X_DDC6	42	X_DDC5	3		
	X_DDC12	63	X_DDC11	24	X_DDC10	43	X_DDC9	4		
	X_DDC16	64	X_DDC15	25	X_DDC14	44	X_DDC13	5		
	X_DDC20	65	X_DDC19	26	X_DDC18	45	X_DDC17	6		
	X_DDC24	66	X_DDC23	27	X_DDC22	46	X_DDC21	7		
	X_DDC28	67	X_DDC27	28	X_DDC26	47	X_DDC25	8		
	X_DDC32	68	X_DDC31	29	X_DDC30	48	X_DDC29	9		
	ISO-GND	69	ISO-GND	30	ISO-GND	49	ISO-GND	10		
	Y-DDC2	70	Y-DDC1	31	ISO-GND	50	ISO-GND	11		
	Y-DDC6	71	Y-DDC5	32	Y-DDC4	51	Y-DDC3	12		
	Y-DDC10	72	Y-DDC9	33	Y-DDC8	52	Y-DDC7	13		
	Y-DDC14	73	Y-DDC13	34	Y-DDC12	53	Y-DDC11	14		
	Y-DDC18	74	Y-DDC17	35	Y-DDC16	54	Y-DDC15	15		
	Y-DDC22	75	Y-DDC21	36	Y-DDC20	55	Y-DDC19	16		
	Y-DDC26	76	Y-DDC25	37	Y-DDC24	56	Y-DDC23	17		
	Y-DDC30	77	Y-DDC29	38	Y-DDC28	57	Y-DDC27	18		
	ISO-GND	78	ISO-GND	39	Y-DDC32	58	Y-DDC31	19		
					ISO-GND	59	ISO-GND	20		

Table 2

ISO-GND Isolation

ISO-GND is isolated from Chassis-Ground and from all other modules in the chassis. It is the return path for all 64 current input signal currents.

Module Dimension

The CDC064 module is a CompactPCI Plug-in Unit with one Bottom-Handle and uses two slots (8hp) of a 3U, 84hp Rack Mount Chassis. PCB size is 100mm x 160mm.

Image 4: CDC064 Module bottom side view. The analog circuits are fully shielded on both sides.

Low Voltage Power Input at Connector P2:

- +5V_DG / 0.4A max
- $+12\overline{V}_{DC} / 0.2A$ max, galvanic isolated analog supply

Supply Voltage Tolerance: ±10%

	Power-Input P2								
C1	+5V_DG								
A1	+5V_DG Return (GND)								
A32	+12V_DC								
A31	+12V DC Return (AGND)								

Table 3

Note: Both module supplies are switched ON/OFF by the frontpanel-handle switch.

Mains AC Power Input CDC-B9 Chassis

Mains Power Input: 230V AC Two fuses: Phase and Neutral with 2Ampere, Slow characteristic

Image 5: Remove power-cord to get access to the extraction slits to change fuses. Max Power Consumption with nine CDC064 Modules installed: 50 Watt

High voltage is inside the chassis. Do not open. Do not remove screws.

Module-Setup

Com-Port Selection

2-3	
1-2	x
	2-3 1-2

Table 4

USB port is selectable with jumper JP3, JP4 at upper position 2-3.

UART Settings : Baud-Rate : 921600 fixed Parity : No Data-Bits : 8 Stop-Bit : 1

LAN port is selected with jumper JP3, JP4 at lower position 1-2.

The LAN connection is done with the XT-Nano-SXL LAN to UART interface via local port 1002 (table 4).

Image 7

Each module has its individual MAC address, labeled at the PCB. AK-Nord provides an <u>Administrator tool</u> for programming the interface parameters as well as permanent IP.

				XT-NANO SXL se	ttings			
	Serial Config	g Menu	TCP Menu			DHCP Menu		
1	Baudrate	921600 (1.041.666)	1	Port Timeout	30 (sec)	1	DHCP (Y/N)	Y
2	Databits	8	2	TCP-KeepAlive (Y/N)	Y			
3	Parity	N	3	Naglemode (Y/N)	Y		Set DHCP = N for	or permanent IP
4	Stoppbits	1	4	Num of TXPackets	0 (auto)			
5	Flow Control	N						
6	RTS Protocol	0		WEB-Logii	ו			
7	DCD Protocol	0		User	XT			
8	DTR Protocol	0		Password	XT			
9	DSR Protocol	0						
а	Emulation	TCPSERVER		DNS-Menu	1			
b	EmuCode	0	1	DNS Server1	10.0.0.1			
с	BUS	RS232	2	DNS Server2	0.0.0.0			
d	InputTimeOut*10ms	0	3	DNS Name	CDC064_xxx			
е	Local Port	1002						
f	With SSL/TLS	N		xxx= Serial number 000	999			

Table 5: Default XT-Nano-SXL Interface Parameters

Image 8 : Programming permanent IP-Address with the Admin tool from AK-Nord

Communication

Communication via LAN or USB is done in ASCII-code and hexadecimal numbers with commands described in the « CDC064 Commands and Registers Rev 3.3 » table.

Commands

Display with address increment:

d(addr,nunits) example: d(0x4,0xa) d() reads nunits of 32 bit data starting from addr, incrementing the addr +4 after each read; nunits range: 0x1..0x20

Write:

w(addr,data) example: w(0x5,0xb) Command w() is to write data to the specified address.

Display without address increment:

D(addr,nunits) example: D(0x4,0xa) Command D() is same as d() but without increment of addr.

Display Repeat:

d() : Uses the previously transmitted values of addr and nunits. This command gets the fastest response time.

Command-examples are in « CDC064 Commands and Registers Rev 3.3 » table page 2.

Note: All commands end with a right parenthesis ")". Commands are send back by CDC064-Module and are terminated with CR+LF+">" or Command and CR+LF and DATA and CR+LF+">" as shown at image 9 blue graph.

Image 9: ADC-Data transfer via command d(0x1000000,0x20);

Image 10 : ADC-Data transfer via repeat command d() ;

ADC-Data Transmission Modes

For time critical applications the transmission mode for ADC-datas could be set to 'Short' with the command w(0x18,0x1).

In this mode the transmission of ADC-data is stripped from 10 byte to 5 byte.

This is pure 20bit-ADC-data without any overhead and cuts transmission time to 4.3ms for 32 channels of ADC data.

Image 11: PM-GUI with Transmission-Mode Register set from Default to Short.

CDC-X and CDC-Y converters are seperate units within one CDC064-module and need their individual initialization.

Initialization Command Sequence

- 1. Select Range
- 2. Set Conversion Time
- 3. Enable Configuration
- 4. Check Configuration flags
- 5. Enable Run

Example CDC-X:

w(0x0,0xfc0)	// Select 350pC Integration Capacity	(1)
>d(0x0,0x1)	// Read Config Register	
0x00000fc0	// Result of Config Register	
>w(0xc,0x11170)	// Set Conversion Time Register to 3.5 ms -> i=q/t = 350 pC/ 3.5 ms = 100 nA	(2)
>d(0xc,0x1)	// Read Conversion Time Register	
0x00011170	// Result of Config Register	
>w(0x4,0x0)	// Set ConfigEn-Flag -0-1 restarts configuration	
>w(0x4,0x1)	// Set ConfigEn-Flag -0-1 restarts configuration	(3)
>d(0x4,0x1)	// Read ConfigEn Register and flags	(4)
0x0fc0000f	// Check Config Parity Flag (configuration programming successful)	
>w(0x8,0x1)	// Set RunEn Register Run- Flag	(5)
>d(0x8,0x1)	// Check RunEn Register Run- Flag set	
0x00000001	// Check RunEn Register Run- Flag set	
>		

Example CDC-Y:

// Select 350pC Integration Capacity	(1)
// Read Config Register	
// Result of Config Register	
// Set Conversion Time Register to 3.5 ms -> i=q/t = 350 pC/ 3.5 ms = 100 nA	(2)
// Read Conversion Time Register	
// Result of Config Register	
// Set ConfigEn-Flag -0-1 restarts configuration	
// Set ConfigEn-Flag -0-1 restarts configuration	(3)
// Read ConfigEn Register and flags	(4)
// Check Config Parity Flag (configuration programming successful)	
// Set RunEn Register Run- Flag	(5)
// Check RunEn Register Run- Flag set	
	<pre>// Select 350pC Integration Capacity // Read Config Register // Result of Config Register // Set Conversion Time Register to 3.5ms -> i=q/t = 350pC/3.5ms = 100nA // Read Conversion Time Register // Result of Config Register // Set ConfigEn-Flag -0-1 restarts configuration // Set ConfigEn-Flag -0-1 restarts configuration // Read ConfigEn Register and flags // Check Config Parity Flag (configuration programming successful) // Set RunEn Register Run- Flag // Check RunEn Register Run- Flag set</pre>

Read ADC-Data

After the conversion time n ADC-datas are generated and ready to read from the X- or Y-base address. With conversion time n+1 new ADC-datas are generated and immediately overwrites old ADC-datas one by one.

Example:

Read 32 channel ADC-Data from CDC-X d(0x100000,0x20)0x468941F 0x232540F 0x28AA41B 0x23EB00E 0x30AD00A 0x3DF100B 0x75C201A 0xF08A01E 0x1BAD0009 0x2BAA240D 0x3C790419 0x4A86341D 0x53BD2418 0x5A5A2408 0x5DC34017 0x601CE01C 0x3028007 0x641100C 0x7C9A016 0x4048003 0x1C457406 0x108DE413 0x3A9AD405 0x2B172415 0x51E78414 0x485C0002 0x5D796004 0x598D0012 0x638AF010 0x613B6011 0x6379C000 0x63E40401 >

Image 12:

These Sensor channels are not connected in ascending order to the CDC064 Input and need remapping. The remapping sequence for this Ionisation-Chamber example is in the file "CDC_Mapping_CDC064.cvs", see attachment.

Extraction of the 20 MSB represents the ADC-datas. Example Current calculation of e.g. channel 15: Y(n)=a*x(n) $a = 200nA/2^{2}0$ x(15) = 0x5DC34017 => ADC-data = 0x5DC34 = 384'052 $Y(15) = 200nA/2^{2}0 *384'052 = 73.25 nA$

Image 13: Sensor channels with remapped channel order

ADC-RAM-Buffer (ARB)

After each conversion the ADC-data of 32 channels are stored into the ADC-RAM-Buffer ARB. The ARB is an adjustable ring buffer from 32 x 32 bit (1 Data-Set) up to 992 x 32 bit (31 Data Sets).

Two ADC-RAM-Buffer store CDC-X data and CDC-Y data.

ARB-Base-	SET1	SET2	SET3	SET4	SET5	 SET31
Address X	0x1000000	0x1000080	0x10000100	0x1000180	0x10000200	0x10000F00
Address Y	0x4000000	0x4000080	0x40000100	0x4000180	0x40000200	0x40000F00

Table 6

Module-Diagnostics-Registers

Power Register 0x1C:

Two bits controls

- Analog-Supply ON/OFF, reduces module power consumption by 30%
- FPGA-Reset : Resets the module-logic to its default state

Power 5V-Current 0x20:

Digital Supply •LSB = 268.6 uA ; Typical I_{5V} = 0.36A

Power 5V-Voltage 0x24:

Digital Supply

•LSB = 14 mV ; Typical U_{5V} = 5V (+/-10%)

Power 12V-Current 0x28:

Analog Supply $\bullet LSB = 268.6 \text{ uA} \text{ ; Typical } I_{12V} = 0.11 \text{A}$

Power 12V-Voltage 0x2C:

Analog Supply •LSB = 14 mV ; Typical U_{12V} = 12V (+/-10%)

Module Power Consumption:

Power consumption depends on the Analog-Supply ON/OFF status and value of Integration-Time (ConversionTimeReg).

Typical: 2 - 3.5Watt

Interface-Board Temperature 0x30:

Temperature °C

•Temp[°C]=(Reg-Value)/2^16) * 165 -40

Example: See CDC064 Commands and Registers Table

Interface-Board Humidity 0x34:

•Humidity[% RH]= (Reg-Value)^16) * 100 Example: See CDC064 Commands and Registers Table

DDC-Base-Board Temperature 0x40:

•Temp[°C]=(Reg-Value)/2^16) * 165 -40 Example: See CDC064 Commands and Registers Table

DDC-Base-Board Humidity 0x44:

•Temp[°C]=(Reg-Value)/2^16) * 165 -40

Example: See CDC064 Commands and Registers Table

Interface-Board Peak-Temperature 0x38:

•Temp[°C]=(Reg-Value)/2^16) * 165 -40 Example: See CDC064 Commands and Registers Table

Interface-Board Peak-Humidity 0x3C:

•Humidity[% RH]= (Reg-Value)^16) * 100

Example: See CDC064 Commands and Registers Table

DDC-Base-Board Peak-Temperature 0x48:

•Temp[°C]=(Reg-Value)/2^16) * 165 -40 Example: See CDC064 Commands and Registers Table

DDC-Base-Board Peak-Humidity 0x4C:

•Temp[°C]=(Reg-Value)/2^16) * 165 -40

Example: See CDC064 Commands and Registers Table

Module Firmware and Software Rev. (MIR) 0x100:

45-Bit ASCII String: Module Name; Firmware Checksum; Software Revision; Production Date

Revision History

Date	Revision	Update/Revision/Comment
2018-10-15	1.2	Initial issue
2018-10-25	1.3	Index added
2021-01-29	1.4	Note modified at page 6

Commercial Information

Dipl.-Ing. Kramert GmbH Holderweg 2 CH-5236 Remigen <u>http://www.kramert.ch</u> <u>kramert@kramert.ch</u>

Disclaimer

Information in this document may change during the process of the CDC064 project.

Information given by *Dipl.-Ing. Kramert GmbH* is believed to be accurate and reliable. However, no responsibility is assumed by *Dipl.-Ing. Kramert GmbH* for its use, or for any infringements of patents or other rights of third parties that may result from its use.

Filename: CDC064 Manual Rev 1.4.Docx

Trouble Shooting:

- 1. Check Mains Power-Switch at the CDC-B9 chassis rear side switched ON
- 2. Check Power-Supply module front-panel LED ON
- 3. Check LAN cable connected, check both LAN-LEDs flashing, ping the gateway to the module
- 4. Check both module power-LEDs at the CDC064 front-panel ON
- 5. Check X-Y-LED at the CDC064 front-panel. Should react at RunEn start /stop commands
- 6. Read and check the ConfigReg, ConfigEn, RunEn, ConversionTime registers for correct values
- 7. Check CDC064 module power consumption, supply currents and voltages with the Module-Diagnostics registers
- 8. Check module temperature and humidity with the Module-Diagnostics registers
- 9. Wait 30 seconds for module-watch-dog reset
- 10. Power-Cycle the module using the frontpanel-handle switch
- 11. Change the module slot in the CDC-B9 Chassis
- 12. Power-Cycle the CDC-B9 chassis
- 13. Call the Hotline for assistance

Appendix

Mapping Example File: "CDC_Mapping_Neutral.csv"

_		
	А	В
1	GUI Chart 🖂	P1 Ch Input
2	CH_1	1
3	CH_2	2
4	CH_3	3
5	СН_4 🔫	- 4
6	CH_5	5
7	CH_6	6
8	CH_7	7
9	CH_8	8
10	СН_9	9
11	CH_10	10

Table 7

Linearity Correction Example File: "Error Table CDC064 SN5 1000nA.csv"

	А	В	С	
1	CDC064 SN 005			
2	Calibration Current	[nA]: 1000		
3	CH-No	X [%]	Y [%]	
4	1	-0.701437	-2.256492	
5	2	0.249289	0.142025	
6	3	-0.521351	-2.084926	
7	4	0.26467	0.194346	
8	5	0.2318	0.092536	
9	6	0.293259	0.086787	
10	7	-0.518602	-2.112749	
11	8	-0.590794	-2.17574	
12	9	0.233479	0.034655	
13	10	0.274416	0.197587	
14	11	-0.520574	-2.169843	
15	12	-0.523827	-2.196995	

Table 8

CDC-Y Data Example File: "CDC_DATA_Y_File_2933.csv"

	Δ	В	C	D	F	F	G	н	
1	Integration Time Insl: 693050								
2	CDC-Range [pC]: 350,00000								
3	Current at ADC-Max/MSB 20Bits) [nA]: 505.014068								
4	Average Value: 10								
5	incluge fun								
6	Average Ped	estal Y: 3700							
7	Averaged Data Pofil Y with channel-mapping, multiplied by range value, Result in nA. Pedestals substract								
8	, incluged be			.pp	, inclusif 1918.				
9	Channel 1	498,969367							
10	Channel 2	499.064236							
11	Channel 3	499.219315							
12	Channel 4	499.214201							
13	Channel 5	499.075870							
14	Channel 6	499.209633							
15	Channel 7	499.117706							
16	Channel 8	499.114022							
17	Channel 9	499.083488							
18	Channel 10	498.989368							
19	Channel 11	499.069073							
20	Channel 12	499.029844							
21	Channel 13	498.996461							
22	Channel 14	498.994915							
23	Channel 15	499.057964							
24	Channel 16	499.171374							
25	Channel 17	499.018428							
26	Channel 18	499.117114							
27	Channel 19	498.884305							
28	Channel 20	498.922265							
29	Channel 21	499.155087							
30	Channel 22	498.847068							
31	Channel 23	499.077753							
32	Channel 24	499.096984							
33	Channel 25	498.974613							
34	Channel 26	499.118699							
35	Channel 27	499.020874							
36	Channel 28	499.091582							
37	Channel 29	498.917868							
38	Channel 30	498.900879							
39	Channel 31	499.193386							
40	Channel 32	499.109805							
41									

Table 9